Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
JAMA Oncol ; 10(2): 220-226, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153755

RESUMO

Importance: Chronic graft-vs-host disease (GVHD) limits the long-term benefit of haploidentical hematopoietic stem cell transplant (HSCT). This clinical trial evaluated repeated infusions of umbilical cord mesenchymal stem cells (MSCs) during the early stage (45 days and 100 days) after haplo-HSCT to prevent chronic GVHD. Objective: To determine whether repeated infusions of MSCs during the early stage after haplo-HSCT decreases the incidence of severe chronic GVHD. Design, Setting, and Participants: This open-label, multicenter, parallel randomized clinical trial was conducted from April 2016 to January 2022. Eligibility criteria included a diagnosis of acute leukemia and having a haploidentical, suitable related donor for HSCT. The median (range) follow-up time was 39.0 (1.5-67.0) months. Interventions: The enrolled patients with a haploidentical relative for HSCT received the modified busulfan/cyclophosphamide + antithymocyte globulin modified regimen and standard GVHD prophylaxis. Patients were randomly chosen to receive MSCs (the MSC group) (1 × 106 cells/kg, every 2 weeks, starting from 45 days after transplant, 4 times total) or regular prophylaxis (control group). Main Outcome and Measure: The cumulative incidence of severe chronic GVHD. Results: Of 158 patients, 58 (36.7%) were female individuals; the median (range) age for the MSC and control groups was 28 (18-60) years and 28 (18-56) years, respectively. A total of 158 patients were screened, and 148 patients were randomly assigned to the MSC group (n = 74) or control group (n = 74) 1 day before MSCs infusion. The estimated 2-year cumulative incidence of severe chronic GVHD was 5.4% (95% CI, 1.8%-14.0%) in the MSC group and 17.4% (95% CI, 10.1%-28.5%) in the control group (hazard ratio [HR], 0.29; 95% CI, 0.10-0.88; P = .03). There was no difference between the MSC and control groups in the cumulative incidence of leukemia relapse (HR, 1.17; 95% CI, 0.55-2.47; P = .68). The cumulative incidence of stage II to IV acute GVHD in the MSC group was significantly lower than that in the control group (HR, 0.25; 95% CI, 0.09-0.67; P = .01). The MSC group had better GVHD-free and relapse-free survival rates than the control group (HR, 0.62; 95% CI, 0.39-0.98; P = .04). Conclusions and Relevance: The results of this randomized clinical trial show that early repeated infusions of MSCs decreased the incidence and severity of chronic GVHD, and the incidence and severity of acute GVHD manifested as a better GVHD-free and relapse-free survival rate for patients after haplo-HSCT. Trial Registration: Chinese Clinical Trial Registry: ChiCTR-IIR-16007806.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Masculino , Transplante de Células-Tronco Hematopoéticas/métodos , Doença Enxerto-Hospedeiro/etiologia , Ciclofosfamida/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico
2.
Theranostics ; 13(12): 3943-3963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554265

RESUMO

Rationale: In the bone marrow microenvironment (BMME), mesenchymal stem/stromal cells (MSCs) control the self-renewal of both healthy and cancerous hematopoietic stem/progenitor cells (HSPCs). We previously showed that in vivo leukemia-derived MSCs change neighbor MSCs into leukemia-permissive states and boost leukemia cell proliferation, survival, and chemotherapy resistance. But the mechanisms behind how the state changes are still not fully understood. Methods: Here, we took a reverse engineering approach to determine BCR-ABL1+ leukemia cells activated transcriptional factor C/EBPß, resulting in miR130a/b-3p production. Then, we back-tracked from clinical specimen transcriptome sequencing to cell co-culture, molecular and cellular assays, flow cytometry, single-cell transcriptome, and transcriptional regulation to determine the molecular mechanisms of BCR-ABL1-driven exosome-miR130b-3p-mediated gap-junction Cx43 MSC intercellular communications. Results: BCR-ABL1-driven exosome-miR130a/b-3p mediated gap-junction Cx43 (a.k.a., GJA1) BMSC intercellular communications for subclonal evolution in leukemic microenvironment by targeting BMSCs-expressed HLAs, thereby potentially maintaining BMSCs with self-renewal properties and reduced BMSC immunogenicity. The Cx43low and miR-130a/bhigh subclonal MSCs subsets of differentiation state could be reversed to Cx43high and miR-130a/blow subclones of the higher stemness state in Cx43-overexpressed subclonal MSCs. Both miR-130a and miR-130b might only inhibit Cx43 translation or degrade Cx43 proteins and did not affect Cx43 mRNA stability. The subclonal evolution was further confirmed by single-cell transcriptome profiling of MSCs, which suggested that Cx43 regulated their stemness and played normal roles in immunomodulation antigen processing. Thus, upregulated miR-130a/b promoted osteogenesis and adipogenesis from BMSCs, thereby decreasing cancer progression. Our clinical data validated that the expression of many genes in human major histocompatibility was negatively associated with the stemness of MSCs, and several immune checkpoint proteins contributing to immune escape in tumors were overexpressed after either miR-130a or miR-130b overexpression, such as CD274, LAG3, PDCD1, and TNFRSF4. Not only did immune response-related cytokine-cytokine receptor interactions and PI3K-AKT pathways, including EGR3, TNFRSF1B, but also NDRG2 leukemic-associated inflammatory factors, such as IFNB1, CXCL1, CXCL10, and CCL7 manifest upon miR-130a/b overexpression. Either BCR siRNAs or ABL1 siRNAs assay showed significantly decreased miR-130a and miR-130b expression, and chromatin immunoprecipitation sequencing confirmed that the regulation of miR-130a and miR-130b expression is BCR-ABL1-dependent. BCR-ABL1 induces miR-130a/b expression through the upregulation of transcriptional factor C/EBPß. C/EBPß could bind directly to the promoter region of miR-130b-3p, not miR-130a-3p. BCR-ABL1-driven exosome-miR130a-3p could interact with Cx43, and further impact GJIC in TME. Conclusion: Our findings shed light on how leukemia BCR-ABL1-driven exosome-miR130b-3p could interact with gap-junction Cx43, and further impact GJIC in TME, implications for leukemic therapies of subclonal evolution.


Assuntos
Conexina 43 , Exossomos , Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Humanos , Comunicação Celular/genética , Conexina 43/metabolismo , Exossomos/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Microambiente Tumoral/genética , Proteínas Supressoras de Tumor/metabolismo
3.
Acta Biomater ; 157: 381-394, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36375786

RESUMO

Chemotherapy resistance and the tumor immune microenvironment are dual reasons for the poor therapeutic efficacy of treating acute myeloid leukemia (AML), causing suboptimal clinical outcomes and high relapse rates. Activation of the stimulator of interferon genes (STING) pathway based on innate immunity can effectively improve antitumor immunity. However, traditional STING agonists are limited due to their easy degradation and difficult membrane transport. Here, a bioinspired nanomedicine synergizing chemo- and immunotherapy was developed by activating the STING pathway for targeted and systemic AML cell damage. We show that a leukemia cell membrane (LCM)-camouflaged hollow MnO2 nanocarrier (HM) with encapsulated doxorubicin (DOX) (denoted LHMD) could bind specifically to AML cells with a homologous targeting effect. Then, MnO2 was decomposed into Mn2+ in response to endosomal acid and glutathione (GSH), which improved the magnetic resonance imaging (MRI) signal for AML detection and activated the STING pathway. In mouse models, LHMD was confirmed to eradicate established AML and prevent the engraftment of AML cells. The percentages of T-helper 1 (Th1) and T-helper 17 (Th17) cells and the concentrations of type I interferon (IFN-Ⅰ) and proinflammatory cytokines increased, while the percentage of T-helper 2 (Th2) cells decreased, reflecting the anti-AML immune response induced by Mn2+ after treatment with LHMD. This nanotechnology-based therapeutic regimen may represent a generalizable strategy for generating an anti-leukemia immune response. STATEMENT OF SIGNIFICANCE: Relapse and chemotherapy refractoriness are main causes for the dismal prognosis of AML, making it urgent to develop more effective anti-AML therapies. This study proposes an innovative strategy to combat this issue by designing a biomimetic BM-targeted nanomedicine based on a MnO2 nano-carrier to rationally deliver chemotherapeutic agents and to trigger Mn2+ mediated STING pathway activation for potent immune- and chemotherapy against AML cells. Hence, the nanomedicine design addresses the challenges associated with AML therapy and proposes a promising strategy to improve the therapeutic efficacy against AML.


Assuntos
Leucemia Mieloide Aguda , Neoplasias , Animais , Camundongos , Nanomedicina , Compostos de Manganês/farmacologia , Óxidos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Imunoterapia/métodos , Recidiva , Microambiente Tumoral
4.
Int J Mol Sci ; 23(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36232688

RESUMO

Acute myeloid leukemia (AML)-the most frequent form of adult blood cancer-is characterized by heterogeneous mechanisms and disease progression. Developing an effective therapeutic strategy that targets metabolic homeostasis and energy production in immature leukemic cells (blasts) is essential for overcoming relapse and improving the prognosis of AML patients with different subtypes. With respect to metabolic regulation, fructose-1,6-bisphosphatase 1 (FBP1) is a gluconeogenic enzyme that is vital to carbohydrate metabolism, since gluconeogenesis is the central pathway for the production of important metabolites and energy necessary to maintain normal cellular activities. Beyond its catalytic activity, FBP1 inhibits aerobic glycolysis-known as the "Warburg effect"-in cancer cells. Importantly, while downregulation of FBP1 is associated with carcinogenesis in major human organs, restoration of FBP1 in cancer cells promotes apoptosis and prevents disease progression in solid tumors. Recently, our large-scale sequencing analyses revealed FBP1 as a novel inducible therapeutic target among 17,757 vitamin-D-responsive genes in MV4-11 or MOLM-14 blasts in vitro, both of which were derived from AML patients with FLT3 mutations. To investigate FBP1's anti-leukemic function in this study, we generated a new AML cell line through lentiviral overexpression of an FBP1 transgene in vitro (named FBP1-MV4-11). Results showed that FBP1-MV4-11 blasts are more prone to apoptosis than MV4-11 blasts. Mechanistically, FBP1-MV4-11 blasts have significantly increased gene and protein expression of P53, as confirmed by the P53 promoter assay in vitro. However, enhanced cell death and reduced proliferation of FBP1-MV4-11 blasts could be reversed by supplementation with post-glycolytic metabolites in vitro. Additionally, FBP1-MV4-11 blasts were found to have impaired mitochondrial homeostasis through reduced cytochrome c oxidase subunit 2 (COX2 or MT-CO2) and upregulated PTEN-induced kinase (PINK1) expressions. In summary, this is the first in vitro evidence that FBP1-altered carbohydrate metabolism and FBP1-activated P53 can initiate leukemic death by activating mitochondrial reprogramming in AML blasts, supporting the clinical potential of FBP1-based therapies for AML-like cancers.


Assuntos
Metabolismo dos Carboidratos , Células Precursoras de Granulócitos , Leucemia Mieloide Aguda , Mitocôndrias , Proteína Supressora de Tumor p53 , Apoptose , Metabolismo dos Carboidratos/efeitos dos fármacos , Metabolismo dos Carboidratos/genética , Dióxido de Carbono/metabolismo , Linhagem Celular Tumoral , Ciclo-Oxigenase 2/metabolismo , Progressão da Doença , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Frutose/farmacologia , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Glicólise , Células Precursoras de Granulócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Vitamina D/farmacologia , Vitaminas/farmacologia , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
Adv Biol (Weinh) ; 6(9): e2200190, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35925599

RESUMO

Oral squamous cell carcinoma (OSCC) patients suffer from poor survival due to metastasis or locoregional recurrence, processes that are both facilitated by perineural invasion (PNI). OSCC has higher rates of PNI than other cancer subtypes, with PNI present in 80% of tumors. Despite the impact of PNI on oral cancer prognosis and pain, little is known about the genes that drive PNI, which in turn drive pain, invasion, and metastasis. In this study, clinical data, preclinical, and in vitro models are leveraged to elucidate the role of neurotrophins in OSCC metastasis, PNI, and pain. The expression data in OSCC patients with metastasis, PNI, or pain demonstrate dysregulation of neurotrophin genes. TrkA and nerve growth factor receptor (NGFR) are focused, two receptors that are activated by NGF, a neurotrophin expressed at high levels in OSCC. It is demonstrated that targeted knockdown of these two receptors inhibits proliferation and invasion in an in vitro and preclinical model of OSCC, and metastasis, PNI, and pain. It is further determined that TrkA knockdown alone inhibits thermal hyperalgesia, whereas NGFR knockdown alone inhibits mechanical allodynia. Collectively the results highlight the ability of OSCC to co-opt different components of the neurotrophin pathway in metastasis, PNI, and pain.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Carcinoma de Células Escamosas/genética , Humanos , Neoplasias Bucais/genética , Invasividade Neoplásica/genética , Recidiva Local de Neoplasia , Processos Neoplásicos , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso , Dor , Receptores Proteína Tirosina Quinases , Receptor de Fator de Crescimento Neural , Receptor trkA , Receptores de Fator de Crescimento Neural/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço
6.
Biomedicines ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35740430

RESUMO

The tumor microenvironment (TME) plays an essential role in the development, proliferation, and survival of leukemic blasts in acute myeloid leukemia (AML). Within the bone marrow and peripheral blood, various phenotypically and functionally altered cells in the TME provide critical signals to suppress the anti-tumor immune response, allowing tumor cells to evade elimination. Thus, unraveling the complex interplay between AML and its microenvironment may have important clinical implications and are essential to directing the development of novel targeted therapies. This review summarizes recent advancements in our understanding of the AML TME and its ramifications on current immunotherapeutic strategies. We further review the role of natural products in modulating the TME to enhance response to immunotherapy.

7.
Cancers (Basel) ; 14(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740540

RESUMO

Currently, most neuroblastoma patients are treated according to the Children's Oncology Group (COG) risk group assignment; however, neuroblastoma's heterogeneity renders only a few predictors for treatment response, resulting in excessive treatment. Here, we sought to couple COG risk classification with tumor intracellular microbiome, which is part of the molecular signature of a tumor. We determine that an intra-tumor microbial gene abundance score, namely M-score, separates the high COG-risk patients into two subpopulations (Mhigh and Mlow) with higher accuracy in risk stratification than the current COG risk assessment, thus sparing a subset of high COG-risk patients from being subjected to traditional high-risk therapies. Mechanistically, the classification power of M-scores implies the effect of CREB over-activation, which may influence the critical genes involved in cellular proliferation, anti-apoptosis, and angiogenesis, affecting tumor cell proliferation survival and metastasis. Thus, intracellular microbiota abundance in neuroblastoma regulates intracellular signals to affect patients' survival.

9.
Biomedicines ; 10(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35625776

RESUMO

Disease relapse is a common cause of treatment failure in FMS-like tyrosine kinase 3 (FLT3) mutated acute myeloid leukemia (AML). In this study, to identify therapeutic targets responsible for the survival and proliferation of leukemic cells (blasts) with FLT3 mutations after gilteritinib (GILT, a 2nd generation tyrosine kinase inhibitor (TKI)) treatment, we performed proteomic screening of cytokine release and in vitro/ex vivo studies to investigate their associated signaling pathways and transcriptional regulation. Here, we report that macrophage migration inhibition factor (MIF) was significantly increased in the supernatant of GILT-treated blasts when compared to untreated controls. Additionally, the GILT-treated blasts that survived were found to exhibit higher expressions of the CXCR2 gene and protein, a common receptor for MIF and pro-inflammatory cytokines. The supplementation of exogenous MIF to GILT-treated blasts revealed a group of CD44High+ cells that might be responsible for the relapse. Furthermore, we identified the highly activated non-classical NFKB2 pathway after GILT-treatment. The siRNA transient knockdown of NFKB2 significantly reduced the gene expressions of MIF, CXCR2, and CXCL5. Finally, treatments of AML patient samples ex vivo demonstrated that the combination of a pharmaceutical inhibitor of the NFKB family and GILT can effectively suppress primary blasts' secretion of tumor-promoting cytokines, such as CXCL1/5/8. In summary, we provide the first evidence that targeting treatment-activated compensatory pathways, such as the NFKB2-MIF/CXCLs-CXCR2 axis could be a novel therapeutic strategy to overcome TKI-resistance and effectively treat AML patients with FLT3 mutations.

10.
Biomark Res ; 10(1): 16, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366947

RESUMO

Acute myeloid leukemia (AML) has the lowest survival rate among the leukemias. Targeting intracellular metabolism and energy production in leukemic cells can be a promising therapeutic strategy for AML. Recently, we presented the successful use of vitamin D (1,25VD3) gene therapy to treat AML mouse models in vivo. In this study, recognizing the importance of 1,25VD3 as one of only 2 molecules (along with glucose) photosynthesized for energy during the beginning stage of life on this planet, we explored the functional role of 1,25VD3 in AML metabolism.Transcriptome database (RNA-seq) of four different AML cell lines revealed 17,757 genes responding to 1,25VD3-treatment. Moreover, we discovered that fructose-bisphosphatase 1 (FBP1) noticeably stands out as the only gene (out of 17,757 genes) with a 250-fold increase in gene expression, which is known to encode the key rate-limiting gluconeogenic enzyme fructose-1,6-bisphosphatase. The significant increased expression of FBP1 gene and proteins induced by 1,25VD3 was confirmed by qPCR, western blot, flow cytometry, immunocytochemistry and functional lactate assay. Additionally, 1,25VD3 was found to regulate different AML metabolic processes including gluconeogenesis, glycolysis, TCA, de novo nucleotide synthesis, etc. In summary, we provided the first evidence that 1,25 VD3-induced FBP1 overexpression might be a novel therapeutic target to block the "Warburg Effect" to reduce energy production in AML blasts.

11.
Front Cell Dev Biol ; 10: 699144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356283

RESUMO

Background: The mechanism of tumorigenicity potentially evolved in mesenchymal stem cells (MSCs) remains elusive, resulting in inconsistent clinical application efficacy. We hypothesized that subclones in MSCs contribute to their tumorgenicity, and we approached MSC-subclones at the single-cell level. Methods: MSCs were cultured in an osteogenic differentiation medium and harvested on days 12, 19, and 25 for cell differentiation analysis using Alizarin Red and followed with the single-cell transcriptome. Results: Single-cell RNA-seq analysis reveals a discrete cluster of MSCs during osteogenesis, including differentiation-resistant MSCs (DR-MSCs), differentiated osteoblasts (DO), and precursor osteoblasts (PO). The DR-MSCs population resembled cancer initiation cells and were subjected to further analysis of the yes associated protein 1 (YAP1) network. Verteporfin was also used for YAP1 inhibition in cancer cell lines to confirm the role of YAP1 in MSC--involved tumorigenicity. Clinical data from various cancer types were analyzed to reveal relationships among YAP1, OCT4, and CDH6 in MSC--involved tumorigenicity. The expression of cadherin 6 (CDH6), octamer-binding transcription factor 4 (OCT4), and YAP1 expression was significantly upregulated in DR-MSCs compared to PO and DO. YAP1 inhibition by Verteporfin accelerated the differentiation of MSCs and suppressed the expression of YAP1, CDH6, and OCT4. A survey of 56 clinical cohorts revealed a high degree of co-expression among CDH6, YAP1, and OCT4 in various solid tumors. YAP1 inhibition also down-regulated HeLa cell viability and gradually inhibited YAP1 nuclear localization while reducing the transcription of CDH6 and OCT4. Conclusions: We used single-cell sequencing to analyze undifferentiated MSCs and to discover a carcinogenic pathway in single-cell MSCs of differentiated resistance subclones.

12.
Biomark Res ; 9(1): 90, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930473

RESUMO

BACKGROUND: Oral squamous cell carcinoma (OSCC) has poor survival rates. There is a pressing need to develop more precise risk assessment methods to tailor clinical treatment. Epigenome-wide association studies in OSCC have not produced a viable biomarker. These studies have relied on methylation array platforms, which are limited in their ability to profile the methylome. In this study, we use MethylCap-Seq (MC-Seq), a comprehensive methylation quantification technique, and brush swab samples, to develop a noninvasive, readily translatable approach to profile the methylome in OSCC patients. METHODS: Three OSCC patients underwent collection of cancer and contralateral normal tissue and brush swab biopsies, totaling 4 samples for each patient. Epigenome-wide DNA methylation quantification was performed using the SureSelectXT Methyl-Seq platform. DNA quality and methylation site resolution were compared between brush swab and tissue samples. Correlation and methylation value difference were determined for brush swabs vs. tissues for each respective patient and site (i.e., cancer or normal). Correlations were calculated between cancer and normal tissues and brush swab samples for each patient to determine the robustness of DNA methylation marks using brush swabs in clinical biomarker studies. RESULTS: There were no significant differences in DNA yield between tissue and brush swab samples. Mapping efficiency exceeded 90% across all samples, with no differences between tissue and brush swabs. The average number of CpG sites with at least 10x depth of coverage was 2,716,674 for brush swabs and 2,903,261 for tissues. Matched tissue and brush swabs had excellent correlation (r = 0.913 for cancer samples and r = 0.951 for normal samples). The methylation profile of the top 1000 CpGs was significantly different between cancer and normal samples (mean p-value = 0.00021) but not different between tissues and brush swabs (mean p-value = 0.11). CONCLUSIONS: Our results demonstrate that MC-Seq is an efficient platform for epigenome profiling in cancer biomarker studies, with broader methylome coverage than array-based platforms. Brush swab biopsy provides adequate DNA yield for MC-Seq, and taken together, our findings set the stage for development of a non-invasive methylome quantification technique for oral cancer with high translational potential.

13.
Blood Genom ; 5(1): 29-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368804

RESUMO

An increasing number of reports indicate that mesenchymal stem cells (MSCs) play an essential role in promoting tumorigenesis and progression of head and neck squamous cell carcinoma (HNSCC). However, the molecular mechanisms underlying this process remain unclear. Using the MSC model system, this study analyzes the molecular pathway by which differentiation resistant MSCs promote HNSCC. MSCs were cultured in osteogenic differentiation media and harvested on days 12 and 19. Cells were stained for cell differentiation analysis using Alizarin Red. The osteogenesis-resistant MSCs (OR-MSCs) and MSC-differentiation-derived osteoblasts (D-OSTBs) were identified and subjected to the single-cell transcriptome analysis. Gene-specific analyses of these two sub-populations were performed for the patterns of differential expression. A total of 1 780 differentially expressed genes were determined to distinguish OR-MSCs significantly from D-OSTB. Notably, AJUBA, ß-catenin, and CDH4 expression levels were upregulated considerably within the OR-MSCs compared to D-OSTBs. To confirm their clinical relevance, a survey of a clinical cohort revealed a high correlation among the expression levels of AJUBA, ß-catenin and CDH4. The results shed new light that OR-MSCs participate in the development of HNSCC via a pathway mediated by AJUBA, ß-catenin, CDH4, and CTNNB1, thereby implying that MSC-based therapy is a promising therapeutic approach in the management of HNSCC.

14.
Genome Biol ; 22(1): 182, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140043

RESUMO

Long-read RNA sequencing (RNA-seq) technologies can sequence full-length transcripts, facilitating the exploration of isoform-specific gene expression over short-read RNA-seq. We present LIQA to quantify isoform expression and detect differential alternative splicing (DAS) events using long-read direct mRNA sequencing or cDNA sequencing data. LIQA incorporates base pair quality score and isoform-specific read length information in a survival model to assign different weights across reads, and uses an expectation-maximization algorithm for parameter estimation. We apply LIQA to long-read RNA-seq data from the Universal Human Reference, acute myeloid leukemia, and esophageal squamous epithelial cells and demonstrate its high accuracy in profiling alternative splicing events.


Assuntos
Processamento Alternativo , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , RNA Mensageiro/genética , Software , Transcriptoma , Algoritmos , Linhagem Celular Tumoral , DNA Complementar/genética , DNA Complementar/metabolismo , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , RNA Mensageiro/metabolismo
16.
Leukemia ; 35(6): 1563-1570, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33077866

RESUMO

Safety and efficacy of allogeneic anti-CD19 chimeric antigen receptor T cells (CAR-T cells) in persons with CD19-positive B-cell acute lymphoblastic leukemia (B-ALL) relapsing after an allotransplant remain unclear. Forty-three subjects with B-ALL relapsing post allotransplant received CAR-T cells were analyzed. 34 (79%; 95% confidence interval [CI]: 66, 92%) achieved complete histological remission (CR). Cytokine release syndrome (CRS) occurred in 38 (88%; 78, 98%) and was ≥grade-3 in 7. Two subjects died from multiorgan failure and CRS. Nine subjects (21%; 8, 34%) developed ≤grade-2 immune effector cell-associated neurotoxicity syndrome (ICANS). Two subjects developed ≤grade-2 acute graft-versus-host disease (GvHD). 1-year event-free survival (EFS) and survival was 43% (25, 62%). In 32 subjects with a complete histological remission without a second transplant, 1-year cumulative incidence of relapse was 41% (25, 62%) and 1-year EFS and survival, 59% (37, 81%). Therapy of B-ALL subjects relapsing post transplant with donor-derived CAR-T cells is safe and effective but associated with a high rate of CRS. Outcomes seem comparable to those achieved with alternative therapies but data from a randomized trial are lacking.


Assuntos
Antígenos CD19/metabolismo , Transplante de Células-Tronco Hematopoéticas/mortalidade , Imunoterapia Adotiva/métodos , Recidiva Local de Neoplasia/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Prognóstico , Receptores de Antígenos Quiméricos/imunologia , Estudos Retrospectivos , Taxa de Sobrevida , Doadores de Tecidos , Transplante Homólogo , Adulto Jovem
17.
BMC Genomics ; 21(Suppl 11): 793, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33372596

RESUMO

BACKGROUND: Long-read RNA-Seq techniques can generate reads that encompass a large proportion or the entire mRNA/cDNA molecules, so they are expected to address inherited limitations of short-read RNA-Seq techniques that typically generate < 150 bp reads. However, there is a general lack of software tools for gene fusion detection from long-read RNA-seq data, which takes into account the high basecalling error rates and the presence of alignment errors. RESULTS: In this study, we developed a fast computational tool, LongGF, to efficiently detect candidate gene fusions from long-read RNA-seq data, including cDNA sequencing data and direct mRNA sequencing data. We evaluated LongGF on tens of simulated long-read RNA-seq datasets, and demonstrated its superior performance in gene fusion detection. We also tested LongGF on a Nanopore direct mRNA sequencing dataset and a PacBio sequencing dataset generated on a mixture of 10 cancer cell lines, and found that LongGF achieved better performance to detect known gene fusions over existing computational tools. Furthermore, we tested LongGF on a Nanopore cDNA sequencing dataset on acute myeloid leukemia, and pinpointed the exact location of a translocation (previously known in cytogenetic resolution) in base resolution, which was further validated by Sanger sequencing. CONCLUSIONS: In summary, LongGF will greatly facilitate the discovery of candidate gene fusion events from long-read RNA-Seq data, especially in cancer samples. LongGF is implemented in C++ and is available at https://github.com/WGLab/LongGF .


Assuntos
Software , Transcriptoma , Algoritmos , Fusão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA
18.
Cancer Manag Res ; 12: 11411-11419, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192098

RESUMO

INTRODUCTION: Increasing evidence has demonstrated that plasmacytoid dendritic cells (PDCs) in the tumor microenvironment (TME) play an important role in tumorigenesis and progression. PDC infiltration has been found in certain malignancies such as classic Hodgkin's lymphoma and chronic myelomonocytic leukemia. Our previous work reported that PDC infiltration could occur in acute myeloid leukemia (AML), but the clinical significance of PDC in AML has not been thoroughly investigated. PATIENTS AND METHODS: Here, we evaluated the clinical significance of PDC to AML transition in a leukemia microenvironment. The frequency of PDCs in 80 acute myelomonocytic leukemia (AML-M4) and 83 acute monocytic leukemia (AML-M5) patients was determined by flow cytometry. RESULTS: We found 62 cases with PDC infiltration. These patients showed higher numbers of bone marrow blasts, higher mean Hb concentration, and required more cycles of chemotherapy before achieving complete remission (CR), but had lower white blood cell and platelet counts compared to patients without PDC infiltration. Drug sensitivity analysis showed that patients with PDC infiltration had lower sensitivity to standard chemotherapy regimens. Kaplan-Meier survival curves demonstrated that patients with PDC infiltration had a shorter overall survival (OS) time and progression-free survival time. DISCUSSION: These results suggested that PDC infiltration can be used for risk stratification of AML-M4/M5, and PDCs may transdifferentiate into leukemia in an AML microenvironment.

19.
J Clin Oncol ; 38(36): 4249-4259, 2020 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-33108244

RESUMO

PURPOSE: Relapse is a major cause of treatment failure after allogeneic hematopoietic stem-cell transplantation (allo-HSCT) for high-risk acute myeloid leukemia (HR-AML). The aim of this study was to explore the effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) combined with minimal-dose decitabine (Dec) on the prevention of HR-AML relapse after allo-HSCT. PATIENTS AND METHODS: We conducted a phase II, open-label, multicenter, randomized controlled trial. Two hundred four patients with HR-AML who had received allo-HSCT 60-100 days before randomization and who were minimal residual disease negative were randomly assigned 1:1 to either rhG-CSF combined with minimal-dose Dec (G-Dec group: 100 µg/m2 of rhG-CSF on days 0-5 and 5 mg/m2 of Dec on days 1-5) or no intervention (non-G-Dec group). The primary outcome was relapse after transplantation, and the secondary outcomes were chronic graft-versus-host disease (cGVHD), safety of the treatment, and survival. RESULTS: The estimated 2-year cumulative incidence of relapse in the G-Dec group was 15.0% (95% CI, 8.0% to 22.1%), compared with 38.3% (95% CI, 28.8% to 47.9%) in the non-G-Dec group (P < .01), with a hazard ratio (HR) of 0.32 (95% CI, 0.18 to 0.57; P < .01). There was no statistically significant difference between the G-Dec and non-G-Dec groups in the 2-year cumulative incidence of cGVHD without relapse (23.0% [95% CI, 14.7% to 31.3%] and 21.7% [95% CI, 13.6% to 29.7%], respectively; P = .82), with an HR of 1.07 (95% CI, 0.60 to 1.92; P = .81). After rhG-CSF combined with minimal-dose Dec maintenance, increasing numbers of natural killer, CD8+ T, and regulatory T cells were observed. CONCLUSION: Our findings suggest that rhG-CSF combined with minimal-dose Dec maintenance after allo-HSCT can reduce the incidence of relapse, accompanied by changes in the number of lymphocyte subtypes.


Assuntos
Antimetabólitos Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Decitabina/uso terapêutico , Filgrastim/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/terapia , Condicionamento Pré-Transplante/métodos , Adolescente , Adulto , Antimetabólitos Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Criança , Pré-Escolar , Decitabina/farmacologia , Feminino , Filgrastim/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Recidiva , Fatores de Risco , Adulto Jovem
20.
Crit Rev Oncol Hematol ; 153: 103046, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32650214

RESUMO

Central nervous system leukemia (CNSL) is a severe complication of acute leukemia, with serious consequences for life quality and expectancy. The molecular mechanism of CNSL is unclear at present. Thus, determining appropriate prevention and therapeutic strategies for CNSL remain challenging. Currently, inferences regarding gene functions are based on the measurement of average gene expression in a bulk lysate. However, leukemia cells are a heterogeneous population in which the expression of critical genes may be masked by many unrelated genes. Single-cell sequencing may therefore be the best way to explore the development of CNSL in the bone marrow and peripheral blood at diagnosis and subsequent time points, in order to detect potential targets and prevent the development of CNSL. In this review, we first discuss the possible mechanism of CNSL, then describe the heterogeneity of leukemia cells. Finally, we focus on the role of single-cell technology in preventing and treating CNSL.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Leucemia Mieloide Aguda , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...